Flux RSS d'astronomie

Actualités IRFU

Actualités IRFU

Euclid : L’Irfu a livré le plan focal, coeur de l’instrument VIS

Arrivé à bon port. Le plan focal de l’imageur visible (appelé VIS) du satellite Euclid vient d’être livré par l’Irfu au laboratoire responsable de l’instrument (MSSL*/UK) pour poursuivre son intégration dans le satellite dont le décollage est prévu en 2022.  Les premières études de ce plan focal ont été menées à l’Irfu depuis 2010 et après presque 10 ans de développements et de tests, c’est durant l'année 2019 qu’il a été testé intégralement par l’Irfu. Ce plan de détecteurs est composé de 36 CDD totalisant plus de 600 millions de pixels. Chaque image acquise en vol par ce plan focal permettra de caratériser plus de 50 000 galaxies. Il s'agit de la deuxième plus grande caméra, observant dans le visible, lancée dans l'espace après celle du satellite Gaïa. Dans l'espace, ses observations permettront la mesure des déformations des galaxies dues aux effets de lentille gravitationnelle faibles induits par des amas de matière que la lumière rencontre sur son trajet pour nous parvenir. Ces effets de distorsions gravitationnelles à différentes époques de l'Univers fourniront des mesures de la distribution de matière noire et seront une contrainte sur l'énergie noire. *Mullard Space Science Laboratory

La mise en service réussie de SPIRAL2 en fin d’année 2019

Suite à l’autorisation de mise en service de SPIRAL2 délivrée par l’Autorité de Sureté Nucléaire (ASN) le 8 juillet 2019, de nombreuses étapes cruciales se sont enchainées avec succès en fin d’année 2019, avec notamment un premier faisceau de protons accéléré à 33 MeV, l’énergie nominale par l’accélérateur linéaire de SPIRAL2 (LINAC) et une première expérience test dans la salle expérimentale Neutron For Science (NFS). Ces premiers résultats de 2019 sont très prometteurs. Ils vont se poursuivre en 2020 avec notamment l’augmentation des performances du LINAC et la montée en puissance du faisceau (10% de la puissance maximale attendue). Parallèlement avec cette montée en puissance du faisceau, des expériences tests dans NFS seront menées.

Soleil, prends garde à toi ! Lancement de SolarOrbiter réussi !

La nouvelle mission d'exploration du Soleil de l'ESA, Solar Orbiter, s'est envolée dans l'espace à bord de la fusée américaine Atlas V 411 depuis le port spatial de la NASA à Cap Canaveral, en Floride, à 05:03 heure europénne le 10 février 2020.   à 6h, Le déploiement des panneaux solaires est confirmé. C'était le signal attendu : la mission SolarOrbiter est lancée ! Objectif Soleil pour Solar Orbiter (actualité DRF)

Optimiser Euclid : une corrélation croisée entre les observables

Pour mesurer les paramètres cosmologiques, le télescope spatial Euclid utilisera deux sondes principales : les lentilles gravitationnelles (Weak Gravitational Lensing) et la distribution des galaxies (Galaxy Clustering). Ces mesures permettront notamment de comprendre le comportement de l'énergie sombre et de la matière noire qui affectent la croissance des structures cosmiques et ainsi, l’accélération de l’expansion de l’Univers. Outre ses implications sur les développements instrumentaux et le traitement des données, l’Irfu participe activement aux développements d’algorithmes nécessaires à la préparation de l’extraction des paramètres cosmologiques qui seront issus des mesures d’Euclid. Coordonnée par Valeria Pettorino, physicienne au laboratoire CosmoStat de l’Irfu, en collaboration avec Tom Kitching (UCL) et Ariel Sanchez (MPE), une équipe internationale de la collaboration Euclid ayant des expertises complémentaires en théorie et observation vient d’achever un travail de 3 ans caractérisant les performances attendues d’Euclid pour ces sondes d’observation. Publication sur Arxiv: https://arxiv.org/pdf/1910.09273.pdf [1] University College London ; [2] Max Planck Institute for extraterrestrial physics

L'Upsilon (1S), contre vents et marées

Quelques microsecondes après le Big Bang, l’Univers serait passé par un état où seuls les constituants les plus élémentaires de la matière y figurent : le plasma de quarks et de gluons (QGP). Le QGP est créé lors de collisions d’ions lourds ultra relativistes. En particulier au LHC (CERN), le QGP s’écoule comme un fluide emportant tout sur son passage. Ainsi, toutes les particules, légères, étranges ou charmées mesurées jusqu’à maintenant apparaissent comme emportées par le même fluide, ce qui témoigne de la force des interactions entre constituants du QGP. La collaboration ALICE au LHC, avec une contribution décisive des équipes de l’Irfu, vient de publier dans la prestigieuse revue Physical Review Letters la première mesure du flot elliptique de l’Υ(1S) (particule composée d’un quark beau et de son antiquark). Cette résonance apparaît comme la première particule au LHC ne se déplaçant pas avec le fluide. Ce résultat pionnier ouvre la voie à des études plus approfondies du QGP.

Recherche de désintégrations rares : les cristaux à base de molybdène à l'essai au laboratoire souterrain de Modane

L’expérience internationale CUPID Mo menée par des laboratoires français de l’IN2P3 et du CEA/IRFU, teste depuis avril dernier l’usage de cristaux à base de Molybdène pour détecter des doubles désintégrations beta sans émission de neutrinos. L'expérience monte progressivement en puissance et montre dès à présent un fond proche de zéro dans la zone d'intérêt, ce qui est très prometteur. Les scientifiques de la collaboration faisaient un point à l'occasion de l'inauguration officielle les 11 et 12 décembre 2019.

L’étau se resserre autour des neutrinos du cosmos

Une équipe du département de physique des particules (DPhP) de l'Irfu, vient de mener l’étude la plus précise à ce jour portant sur la masse de neutrinos cosmiques, comprenant à la fois des neutrinos du modèle standard et des neutrinos stériles contribuant à la matière noire.   Les chercheurs ont exploité les spectres de près de 200 000 quasars lointains mesurés par le projet eBOSS du Sloan Digital Sky Survey (SDSS), qui leur ont permis de cartographier la répartition de l’hydrogène à des époques très reculées de l’histoire de notre univers, il y a dix à douze milliards d’années de cela. Les neutrinos, se propageant à des vitesses relativistes durant des milliards d’années, empêchent la gravité d'agir à petites échelles et lissent les structures (amas de galaxies, filaments,…) révélées par les spectres des quasars.  Grâce à la précision des mesures, les chercheurs ont pu resserrer le domaine possible pour la masse des neutrinos cosmiques, au point d’avoir leur mot à dire sur la façon dont sont ordonnées les différentes masses des trois neutrinos du modèle standard.

Vibration d’étoile et collision galactique

ν Indi est une étoile brillante (magnitude visuelle mv = 5.3) visible à l’œil nu depuis l’hémisphère sud. En utilisant des données sol (télescopes ESO), espace (missions spatiales Gaia et Tess) et en combinant des informations très diverses de spectroscopie, astrométrie, cinématique ou d’astérosismologie, une équipe internationale incluant deux chercheurs du Département d’Astrophysique/Laboratoire AIM  du CEA-Saclay a pu déterminer l'époque, entre 11.6 et 13.2 milliards d’années, d’une collision entre notre galaxie avec une petite galaxie naine , Gaia-Enceladus. Ces travaux sont publiés dans la revue Nature Astronomy, Janvier 2020.

L’Irfu joue au Père Noël en Suède !

Le 4 décembre 2019, la réception mécanique du RFQ fourni par l’Irfu a eu lieu au sein du tunnel du projet ESS (European Spallation Source) à Lund, en Suède. À la suite de la livraison du RFQ le 27 août 2019, l’installation s’est tout de suite enchainée avec l’équipe Irfu présente et garante de son succès au cours des mois suivants.

Voyage 2050

L’Agence spatiale européenne (ESA) s’est livrée cet automne à un exercice destiné à façonner son programme scientifique pour la période 2035-2050. Après le programme Horizon 2000 démarré en 1983, suivi de son extension Horizon 2000 Plus, l’agence est engagée jusqu’à 2035 dans le programme Cosmic Vision, programmation qui inclut notamment les lancements des missions Athena (2031) et LISA (2034). En vue de planification à long terme des priorités scientifiques au-delà de cette date, l’ESA a sollicité la communauté à travers un appel à idées/projets. Cette consultation a débouché sur la publication de près de cent projets (sous forme de livres blancs ou White Papers), couvrant des domaines aussi variés que la physique fondamentale, l’exploration du système solaire ou bien encore l’étude de l’univers lointain. Le processus d’évaluation aboutira courant 2020 avec une série de recommandations à destination de la direction scientifique de l’ESA. Les scientifiques du Département d’Astrophysique/UMR AIM et collaborateurs ont répondu positivement à cet exercice en proposant plusieurs projets, dont certains sont décrits ci-après. Le programme complet de l’atelier de Madrid, les diverses présentations ainsi que l’accès à l’ensemble des Livres blancs soumis par la communauté scientifique sont accessibles à partir du site de l’ESA Voyage 2050. Notons également qu’à l’occasion de cette prospective, l’ESA a invité le grand public à participer à une consultation sur les grandes questions scientifiques prioritaires du prochain programme spatial de l’ESA.

Revenir