Flux RSS d'astronomie

ESA Top Multimedia

ESA Top Multimedia

Noteworthy nearby spiral

Noteworthy nearby spiral

Iberian fires August 2025

Iberian fires August 2025

Aurora Australis over Concordia station

The Aurora Australis, photographed over Concordia station in July 2025, during the ongoing solar activity maximum, the peak of the Sun's 11-year cycle. 

This dazzling light show appears when charged particles from the Sun are guided by Earth’s magnetic field towards the polar regions, where they collide with gases in the upper atmosphere and create shimmering waves of colour dancing across the sky. 

Concordia station, perched high on Antarctica’s Dome C plateau, is one of the most remote research outposts on Earth. On 4 May this year, the Sun set below the horizon and only returned on 10 August. During this four-month polar winter, the station's crew experienced continuous darkness and glacial temperatures plummeting to –80°C. 

This frozen, silent world is an analogue for space missions, with the isolation, extreme cold, lack of sunlight and distance from emergency support mirroring the challenges astronauts will face on long-duration missions. 

Each year, ESA sponsors a medical doctor to live and work at Concordia station for a full winterover, conducting research into how the human body and mind adapt to these conditions. This year, Dr Nina Purvis from the United Kingdom has joined the DC21 crew – the 21st team to winterover at the station – to carry out biomedical studies on herself and her crewmates to help prepare for future missions to the Moon and Mars. 

Follow Nina’s updates from the station and read more stories from past ESA-sponsored doctors on our Concordia blog.  

New moon of Uranus

New moon of Uranus

ESTEC Open Days 2025

The ESTEC Open Days 2025. Registrations open soon. Registration for the Open Day on 11 October opens on 18 August. Registration for the Open Day on 12 October opens on 8 September.

Śmieci kosmiczne: czy to już kryzys?

Ziemię otaczają tysiące satelitów, które wykonują kluczowe zadania – zapewniają łączność i nawigację, wspierają badania klimatu oraz pomagają odpowiadać na fundamentalne pytania dotyczące Wszechświata.

Jednak w miarę jak eksploracja kosmosu nabiera tempa jak nigdy dotąd, satelity poruszają się w coraz bardziej zatłoczonych orbitach – przeciętych przez strumienie szybko przemieszczających się odłamków powstałych w wyniku kolizji, fragmentacji i rozpadu obiektów w przestrzeni kosmicznej.

Każdy taki odłamek może uszkodzić kolejnego satelitę. Pojawiają się obawy, że lawina kolizji może doprowadzić do sytuacji, w której niektóre orbity staną się bezużyteczne. Co więcej, skala szkód związanych z gwałtownym wzrostem liczby startów oraz ilością obiektów powracających do atmosfery i oceanów pozostaje wciąż nieznana.

Czy zatem śmieci kosmiczne stanowią już kryzys?

Film dokumentalny analizuje obecną sytuację na orbitach Ziemi i pokazuje, jakie zagrożenie dla naszej przyszłości w kosmosie stanowi problematyczne środowisko orbitalne. Przedstawia również możliwe rozwiązania oraz to, jak możemy dążyć do rzeczywistego zrównoważonego rozwoju w przestrzeni kosmicznej — ponieważ działania podejmowane dziś będą miały konsekwencje dla przyszłych pokoleń.

Program Bezpieczeństwa Kosmicznego ESA

Program Bezpieczeństwa Kosmicznego Europejskiej Agencji Kosmicznej ma na celu zabezpieczenie przyszłości lotów kosmicznych oraz ochronę Ziemi i naszej infrastruktury – zarówno naziemnej, jak i orbitalnej – przed zagrożeniami pochodzącymi z przestrzeni kosmicznej.

Od asteroid i burz słonecznych po problem śmieci kosmicznych spowodowany działalnością człowieka – ESA realizuje misje i projekty, które mają na celu zrozumienie tych zagrożeń i ich minimalizację.

W dłuższej perspektywie Agencja dąży do stworzenia zrównoważonego i bezpiecznego środowiska kosmicznego poprzez wdrażanie koncepcji gospodarki o obiegu zamkniętym. Aby to osiągnąć, ESA rozwija technologie umożliwiające świadczenie usług serwisowych na orbicie oraz projektowanie statków kosmicznych o zerowym poziomie zanieczyszczeń.

FLEX instrument meets its satellite platform

The development of ESA’s Earth Explorer FLEX mission has recently passed a significant milestone: the mission’s all-important, single instrument  has been joined to its satellite platform. The video shows this delicate operation, which was carried out by spacecraft engineers at Thales Alenia Space in Cannes, France, following the delivery of the instrument from Leonardo in Florence, Italy.

FLEX’s fluorescence imaging spectrometer is called FLORIS for short and designed to map vegetation fluorescence around the globe and quantify photosynthetic activity and plant stress.

Photosynthesis is one of the most fundamental processes on Earth – essential for sustaining life. Most people know it as the mechanism that allows plants to grow by consuming carbon dioxide and releasing oxygen. However, few may realise that as plants photosynthesise, they also emit a very faint fluorescence signal. Importantly, the signal, which is invisible to the naked eye, varies according to environmental conditions and the health of the plant – and can be used to assess plant health and stress.

With its FLORIS instrument, the FLEX mission will detect and measure this faint glow from space to offer better insight into plant health.

As prime contractor, Thales Alenia Space led the satellite platform assembly, integration and test campaign, which took place in Thales’ cleanroom in Belfast, Northern Ireland. Now that the platform and the FLORIS instrument have been integrated in Cannes, the next step is to carry out a final series of tests ahead of the launch scheduled in 2026.

FLEX instrument installed on its satellite

FLEX instrument installed on its satellite

MetOp-SG-A1 and Sentinel-5 launch highlights

Europe’s first MetOp Second Generation, MetOp-SG-A1, weather satellite – which hosts the Copernicus Sentinel-5 mission –  has launched aboard an Ariane 6 rocket from Europe’s Spaceport in French Guiana. The rocket lifted off on 13 August at 02:37 CEST (12 August 21:37 Kourou time).

MetOp-SG-A1 is the first in a series of three successive pairs of satellites. The mission as a whole not only ensures the continued delivery of global observations from polar orbit for weather forecasting and climate analysis for more than 20 years, but also offers enhanced accuracy and resolution compared to the original MetOp mission – along with new measurement capabilities to expand its scientific reach.

This new weather satellite also carries the Copernicus Sentinel-5 mission to deliver daily global data on air pollutants and atmospheric trace gases as well as aerosols and ultraviolet radiation.

MetOp-SG-A1 and Sentinel-5 launch on Ariane 6

Europe’s first MetOp Second Generation, MetOp-SG-A1, weather satellite – which hosts the Copernicus Sentinel-5 mission –  has launched aboard an Ariane 6 rocket from Europe’s Spaceport in French Guiana. The rocket lifted off on 13 August at 02:37 CEST (12 August 21:37 Kourou time).

MetOp-SG-A1 is the first in a series of three successive pairs of satellites. The mission as a whole not only ensures the continued delivery of global observations from polar orbit for weather forecasting and climate analysis for more than 20 years, but also offers enhanced accuracy and resolution compared to the original MetOp mission – along with new measurement capabilities to expand its scientific reach. 

This new weather satellite also carries the Copernicus Sentinel-5 mission to deliver daily global data on air pollutants and atmospheric trace gases as well as aerosols and ultraviolet radiation.

MetOp-SG-A1 and Sentinel-5 lift off

MetOp-SG-A1 and Sentinel-5 lift off

MetOp-SG-A1 and Sentinel-5 ready for liftoff

MetOp-SG-A1 and Sentinel-5 ready for liftoff

Ariane 6: preparing flight VA264 for liftoff

MetOp-SG-A1 travelled onboard the Canopée ship. Our teams at the European spaceport in French Guiana have been quite busy making sure both the rocket and the payloads are ready for flight VA264.

Europe’s first MetOp Second Generation, MetOp-SG-A1, weather satellite – which hosts Copernicus Sentinel-5 as part of its instrument package – is set for liftoff on an Ariane 6 rocket from Europe’s Spaceport in Kourou, French Guiana, on August 2025.

MetOp-SG-A1 is the first in a series of three successive pairs of satellites. The mission as a whole not only ensures the continued delivery of global observations from polar orbit for weather forecasting and climate analysis for more than 20 years, but also offers enhanced accuracy and resolution compared to the original MetOp mission – along with new measurement capabilities to expand its scientific reach.

MetOp-SG-A1, carries six instruments: a next-generation infrared atmospheric sounder, a microwave sounder, a multispectral imaging radiometer, a novel multiviewing, multichannel, multipolarisation imager, a radio occultation sounder (which is also embarked on the MetOp-SG-B satellites), and the European Commission’s Copernicus Sentinel-5 spectrometer.

Building on the success of the Copernicus Sentinel-5 Precursor satellite, the new Copernicus Sentinel-5 introduces an advanced imaging spectrometer. The first of these cutting-edge instruments, Sentinel-5A, is integrated into MetOp-SG-A1, and will work in synergy with other onboard instruments.

The missions will launch on an Ariane 6 with two boosters. Ariane 6 is Europe’s heavy launcher and a key element of ESA’s efforts to ensure autonomous access to space for Europe’s citizens. Its modular and versatile design allows it to launch all missions from low-Earth orbit into deep space. Standing over 60 metres tall, Ariane 6 can weigh almost 900 tonnes when launched with a full payload.

The top of Ariane 6 with MetOp-SG-A1 and Sentinel-5

The top of Ariane 6 with MetOp-SG-A1 and Sentinel-5

Behind the scenes with MetOp-SG and Sentinel-5

Experience the preparation of the MetOp-SG-A1 satellite, hosting Copernicus Sentinel-5, scheduled for liftoff on an Ariane 6 rocket from Europe’s Spaceport in Kourou, French Guiana, on 13 August 2025 at 02:37 CEST (12 August 21:37 Kourou time). This timelapse video captures key stages from the encapsulation within the Ariane 6 fairing to the installation in the launch tower.

MetOp-SG-A1 is the first in a series of three successive pairs of satellites. The mission as a whole not only ensures the continued delivery of global observations from polar orbit for weather forecasting and climate analysis for more than 20 years, but also offers enhanced accuracy and resolution compared to the original MetOp mission – along with new measurement capabilities to expand its scientific reach.

This new weather satellite also carries the Copernicus Sentinel-5 mission to deliver daily global data on air pollutants and atmospheric trace gases as well as aerosols and ultraviolet radiation.

MetOp-SG-A and Sentinel-5 - launch campaign

MetOp-SG-A1 is the first in a series of three successive pairs of satellites. The mission as a whole not only ensures the continued delivery of global observations from polar orbit for weather forecasting and climate analysis for more than 20 years, but also offers enhanced accuracy and resolution compared to the original MetOp mission – along with new measurement capabilities to expand its scientific reach.

This new weather satellite also carries the Copernicus Sentinel-5 mission to deliver daily global data on air pollutants and atmospheric trace gases as well as aerosols and ultraviolet radiation.

A sea monster and a Tarantula

A sea monster and a Tarantula

Human minds, robotic hands

Last July, a team of robots explored a simulated martian landscape in Germany, guided by an astronaut aboard the International Space Station. This was the final session of the Surface Avatar experiment, a joint initiative between ESA and the German Aerospace Center (DLR) to investigate how astronauts can remotely control robotic teams.

This latest session took place at the DLR site in Oberpfaffenhofen and introduced new levels of autonomy, decision-making and realism, bringing Europe one step closer to seamless human-robot collaboration in space exploration.

Alpha Centauri as seen by Webb (panel)

This 3-panel image captures the NASA/ESA/CSA James Webb Space Telescope’s observational search for a planet around the nearest Sun-like star, Alpha Centauri A.

The initial image shows the bright glare of Alpha Centauri A and Alpha Centauri B, then the middle panel shows the system with a coronagraphic mask placed over Alpha Centauri A to block its bright glare. However, the way the light bends around the edges of the coronagraph creates ripples of light in the surrounding space. The telescope’s optics (its mirrors and support structures) cause some light to interfere with itself, producing circular and spoke-like patterns.

These complex light patterns, along with light from the nearby Alpha Centauri B, make it incredibly difficult to spot faint planets. In the panel at the right, astronomers have subtracted the known patterns (using reference images and algorithms) to clean up the image and reveal faint sources like the candidate planet.

Read more

[Image description: Three panels, each showing a different view of the binary star system Alpha Centauri from the Webb. The left panel shows a rectangular image tilted at a 45 degree angle outlined in white on a grey background. The image is a blown-out bright source at the center, with 8, double columned reddish white diffraction spikes. The center of this bright source is outlined with a vertical box, tilted slightly to the left, with two diagonal lines leading to the second panel. This shows a view of both Alpha Centauri A at the bottom and Alpha Centauri B at the top, both with orange star icons over each star. The star icons are surrounded by mottled red and white blotches. The bottom star is outlined with a white square with two diagonal lines leading to the third panel. Within a large white circle there is a blurry red-toned field with an orange star icon and central black circle outlined in white marking the location of Alpha Cen A. A bright orange blob at 9 o’clock in relation to the star is labeled “S1” and circled.]

Hubble sizes up rare interstellar comet

A team of astronomers has taken the sharpest-ever picture of the unexpected interstellar comet 3I/ATLAS, using the crisp vision of the NASA/ESA Hubble Space Telescope.

ESA's Planetary Defence Office responded promptly to the discovery of the comet, and has been tracking it since the beginning of July.

Now, Hubble's observations from space are allowing astronomers to more accurately estimate the size of the comet’s solid icy nucleus. The upper limit on the diameter of the nucleus is 5.6 km, but it could be as small as 320 m across, researchers report.

Though the Hubble images put tighter constraints on the nucleus size compared to previous ground-based estimates, the solid heart of the comet presently cannot be directly seen, even by Hubble. Further observations, including by the NASA/ESA/CSA James Webb Space Telescope, will help refine our knowledge about the comet, including its chemical makeup.

Hubble also captured a dust plume ejected from the Sun-warmed side of the comet, and the hint of a dust tail streaming away from the nucleus. Hubble’s data show that the comet is losing dust in a similar manner to that from previously seen Sun-bound comets originating within our Solar System.

The big difference is that this interstellar visitor originated in some other stellar systems, elsewhere in our Milky Way galaxy.

3I/ATLAS is traveling through our Solar System at roughly 210 000 km per hour, the highest speed ever recorded for a Solar System visitor. This breathtaking sprint is evidence that the comet has been drifting through interstellar space for many billions of years. The gravitational slingshot effect from innumerable stars and nebulae the comet passed added momentum, ratcheting up its speed. The longer 3I/ATLAS was out in space, the higher its speed grew.

This comet was discovered by the Asteroid Terrestrial-impact Last Alert System (ATLAS) on 1 July 2025 at a distance of 675 million km from the Sun. 3I/ATLAS should remain visible to ground-based telescopes until September, after which it will pass too close to the Sun to observe. It is expected to reappear on the other side of the Sun by early December.

Icy wanderers such as 3I/ATLAS offer a rare, tangible connection to the broader galaxy. To actually visit one would connect humankind with the Universe on a far greater scale. To this end, ESA is preparing the Comet Interceptor mission. The spacecraft will be launched in 2029 into a parking orbit, lying in wait for a suitable target – a pristine comet from the distant Oort Cloud that surrounds our Solar System, or, unlikely but highly appealing, an interstellar object.

While it is improbable that we will discover an interstellar object that is reachable for Comet Interceptor, as a first demonstration of a rapid response mission that waits in space for its target, it will be a pathfinder for possible future missions to intercept these mysterious visitors.

The research paper based on Hubble observations will be published in The Astrophysical Journal Letters.

[Image description: At the center of the image is a comet that appears as a teardrop-shaped bluish cocoon of dust coming off the comet’s solid, icy nucleus and seen against a black background. The comet appears to be heading to the bottom left corner of the image. About a dozen short, light blue diagonal streaks are seen scattered across the image, which are from background stars that appeared to move during the exposure because the telescope was tracking the moving comet.]

ESA Astronaut Raphaël Liégeois

ESA astronaut Raphaël Liégeois from Belgium, a member of the ESA Astronaut Class of 2022, was selected in November 2022 from over 22,500 candidates who applied to ESA’s 2021 call for new astronauts.

He began his year-long basic astronaut training at ESA’s European Astronaut Centre (EAC) in Cologne, Germany, in April 2023. This training covered spacecraft systems, spacewalking, flight engineering, robotics, life support systems, survival, and medical training. Raphaël received his astronaut certification alongside fellow astronaut candidates Sophie Adenot, Rosemary Coogan, Pablo Álvarez Fernández, and Marco Sieber at EAC on 22 April 2024, officially marking his transition into a fully-fledged astronaut. 

In June 2024, Raphaël was announced for his first spaceflight mission, currently scheduled for 2026 to the International Space Station. After completing his pre-assignment training, he is now in mission-specific preparation, focusing on the tasks and experiments he will perform during his stay on the Space Station.

 

French:

L’astronaute de l’ESA Raphaël Liégeois, originaire de Belgique, est membre de la promotion 2022 des astronautes de l’ESA. Il a été sélectionné en novembre 2022 parmi plus de 22 500 candidats ayant répondu à l’appel à candidatures lancé par l’ESA en 2021.

Il a débuté sa formation de base d’un an au Centre européen des astronautes (EAC) de l’ESA à Cologne, en Allemagne, en avril 2023. Cette formation couvrait les systèmes spatiaux, les sorties extravéhiculaires, l’ingénierie de vol, la robotique, les systèmes de survie, les techniques de survie et la formation médicale. Raphaël a obtenu sa certification d’astronaute aux côtés de ses camarades Sophie Adenot, Rosemary Coogan, Pablo Álvarez Fernández et Marco Sieber à l’EAC le 22 avril 2024, marquant officiellement son passage au statut d’astronaute confirmé.

En juin 2024, Raphaël a été annoncé pour sa première mission spatiale, actuellement prévue pour 2026 à destination de la Station spatiale internationale. Après avoir terminé sa formation de pré-affectation, il est désormais en préparation spécifique à la mission, axée sur les tâches et les expériences qu’il mènera lors de son séjour à bord de la Station.

 

Dutch:

ESA-astronaut Raphaël Liégeois uit België maakt deel uit van de ESA-astronautenklas van 2022. Hij werd in november 2022 geselecteerd uit meer dan 22.500 kandidaten die reageerden op ESA's oproep voor nieuwe astronauten in 2021.

In april 2023 begon hij aan zijn eenjarige basisopleiding tot astronaut bij het European Astronaut Centre (EAC) van ESA in Keulen, Duitsland. De opleiding ging over ruimtevaartsystemen, ruimtewandelingen, vluchtoperaties, robotica, levensondersteunende systemen, overlevingstechnieken en medische training. Raphaël behaalde zijn astronautencertificaat samen met zijn collega’s Sophie Adenot, Rosemary Coogan, Pablo Álvarez Fernández en Marco Sieber op 22 april 2024 aan het EAC, waarmee hij officieel erkend werd als volwaardig astronaut.

In juni 2024 werd Raphaëls eerste ruimtevlucht aangekondigd, momenteel gepland voor 2026 naar het Internationaal Ruimtestation. Na zijn geavanceerde training, is hij nu in specifieke missievoorbereiding, gericht op de taken en experimenten die hij zal uitvoeren tijdens zijn verblijf in het ruimtestation.

 

German:

Der belgische ESA-Astronaut Raphaël Liégeois gehört zur Astronautenklasse 2022 der ESA. Er wurde im November 2022 aus über 22.500 Bewerberinnen und Bewerbern ausgewählt, die sich auf den Aufruf der ESA zur Astronautenbewerbung im Jahr 2021 gemeldet hatten.

Im April 2023 begann er seine einjährige Basisausbildung zum Astronauten am Europäischen Astronautenzentrum (EAC) der ESA in Köln, Deutschland. Diese Ausbildung umfasste Raumfahrtsysteme, Außenbordeinsätze, Flugtechnik, Robotik, Lebenserhaltungssysteme, Überlebenstraining und medizinische Schulungen. Am 22. April 2024 erhielt Raphaël gemeinsam mit seinen Kolleginnen und Kollegen Sophie Adenot, Rosemary Coogan, Pablo Álvarez Fernández und Marco Sieber am EAC sein Astronautenzertifikat – ein offizieller Schritt zum vollwertigen Astronauten.

Im Juni 2024 wurde Raphaël für seine erste Raumfahrtmission angekündigt, die derzeit für 2026 zur Internationalen Raumstation geplant ist. Nach Abschluss seines Pre-Assignment-Trainings befindet er sich nun in der missionsspezifischen Vorbereitung und konzentriert sich auf die Aufgaben und Experimente, die er während seines Aufenthalts auf der Raumstation durchführen wird.

MetOp-SG-A1 and Sentinel-5 upper-composite about to meet rocket

MetOp-SG-A1 and Sentinel-5 upper-composite about to meet rocket

Mars Express views Acheron Fossae’s western fringes

Mars Express views Acheron Fossae’s western fringes

MetOp-SG and Sentinel-5 stickers on Ariane 6 rocket fairing

MetOp-SG and Sentinel-5 stickers on Ariane 6 rocket fairing

Asteroid (1126) Otero

This video combines all of the observations of asteroid (1126) Otero made by ESA’s Hera spacecraft. The raw images have been processed and aligned. They were acquired on 11 May 2025, while Hera was 2.8 million km from the asteroid. The spacecraft tracked Otero for approximately three hours, capturing an image every six minutes.

The asteroid’s large size and good illumination meant that, even from this distance, it appeared bright enough for Hera’s Asteroid Framing Camera to detect. Hera’s destination, the asteroid Didymos, will appear at least six times fainter than this when it is first detected by the spacecraft in late 2026.

Otero was discovered in 1929 at Heidelberg Observatory in Germany. Almost a century later, it has been observed using a camera manufactured by German company Jenoptik onboard a spacecraft controlled from the city of Darmstadt, less than 60 km from Heidelberg.

Access the related broadcast quality footage.

Asteroid (1126) Otero: image processing

This clip shows the difference between the raw images of asteroid (1126) Otero captured the Asteroid Framing Camera onboard ESA’s Hera spacecraft, and results of the image processing carried out by Hera’s Flight Dynamics team.

Access the related broadcast quality footage.

MetOp-SG-A1 satellite fixed to Ariane 6 launch adaptor

MetOp-SG-A1 satellite fixed to Ariane 6 launch adaptor

Training robots from space

This summer, a team of robots explored a simulated martian landscape in Germany, remotely guided by an astronaut aboard the International Space Station. This marked the fourth and final session of the Surface Avatar experiment, a collaboration between ESA and the German Aerospace Center (DLR) to develop how astronauts can control robotic teams to perform complex tasks on the Moon and Mars.

The session introduced new levels of autonomy and complexity. NASA astronaut Jonny Kim operated two robots – ESA’s four-legged Spot and DLR’s humanoid Rollin’ Justin – to retrieve scattered sample containers and deliver them to a lander. Spot navigated the terrain autonomously, while Justin was guided through a mix of direct control and pre-set commands. This setup allowed Jonny to delegate tasks and focus on higher-level decisions, building on other sessions where robots required full teleoperation.

In a second scenario, ESA’s Interact rover transported DLR’s robot dog Bert to a cave entrance. After removing a boulder, Jonny deployed Bert, which then simulated a malfunction in one of its legs. Jonny had to retrain Bert’s walking algorithm in real time before it continued into the cave and detected signs of martian ice. This tested how operators respond to unexpected challenges and adapt robotic systems on the fly.

The robots are controlled from the International Space Station using a custom-built interface developed by ESA and DLR, combining a joystick and a haptic-feedback device. The interface allows switching between first-person view for immersive teleoperation and a top-down map for broader mission oversight. This flexibility lets the astronaut manage multiple robots efficiently, balancing direct control with strategic delegation.

Over four sessions, the Surface Avatar team has refined its approach to human-robot interaction, improving both teleoperation and task delegation to autonomous systems. The experiment has also helped to identify which tasks astronauts prefer to control directly and which can be safely handed over to robotic systems, offering valuable insight for future mission planning.

Read our blog to find out more.

Webb takes a fresh look at a classic deep field

Webb takes a fresh look at a classic deep field

A supernova-rich spiral

A supernova-rich spiral

Revenir